\(\int \sqrt {c+d x} \sin (a+b x) \, dx\) [40]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [C] (verification not implemented)
   Giac [C] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 16, antiderivative size = 142 \[ \int \sqrt {c+d x} \sin (a+b x) \, dx=-\frac {\sqrt {c+d x} \cos (a+b x)}{b}+\frac {\sqrt {d} \sqrt {\frac {\pi }{2}} \cos \left (a-\frac {b c}{d}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{b^{3/2}}-\frac {\sqrt {d} \sqrt {\frac {\pi }{2}} \operatorname {FresnelS}\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right ) \sin \left (a-\frac {b c}{d}\right )}{b^{3/2}} \]

[Out]

1/2*cos(a-b*c/d)*FresnelC(b^(1/2)*2^(1/2)/Pi^(1/2)*(d*x+c)^(1/2)/d^(1/2))*d^(1/2)*2^(1/2)*Pi^(1/2)/b^(3/2)-1/2
*FresnelS(b^(1/2)*2^(1/2)/Pi^(1/2)*(d*x+c)^(1/2)/d^(1/2))*sin(a-b*c/d)*d^(1/2)*2^(1/2)*Pi^(1/2)/b^(3/2)-cos(b*
x+a)*(d*x+c)^(1/2)/b

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {3377, 3387, 3386, 3432, 3385, 3433} \[ \int \sqrt {c+d x} \sin (a+b x) \, dx=\frac {\sqrt {\frac {\pi }{2}} \sqrt {d} \cos \left (a-\frac {b c}{d}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{b^{3/2}}-\frac {\sqrt {\frac {\pi }{2}} \sqrt {d} \sin \left (a-\frac {b c}{d}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{b^{3/2}}-\frac {\sqrt {c+d x} \cos (a+b x)}{b} \]

[In]

Int[Sqrt[c + d*x]*Sin[a + b*x],x]

[Out]

-((Sqrt[c + d*x]*Cos[a + b*x])/b) + (Sqrt[d]*Sqrt[Pi/2]*Cos[a - (b*c)/d]*FresnelC[(Sqrt[b]*Sqrt[2/Pi]*Sqrt[c +
 d*x])/Sqrt[d]])/b^(3/2) - (Sqrt[d]*Sqrt[Pi/2]*FresnelS[(Sqrt[b]*Sqrt[2/Pi]*Sqrt[c + d*x])/Sqrt[d]]*Sin[a - (b
*c)/d])/b^(3/2)

Rule 3377

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[(-(c + d*x)^m)*(Cos[e + f*x]/f), x]
+ Dist[d*(m/f), Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 3385

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[f*(x^2/d)],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3386

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[f*(x^2/d)], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3387

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3432

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {\sqrt {c+d x} \cos (a+b x)}{b}+\frac {d \int \frac {\cos (a+b x)}{\sqrt {c+d x}} \, dx}{2 b} \\ & = -\frac {\sqrt {c+d x} \cos (a+b x)}{b}+\frac {\left (d \cos \left (a-\frac {b c}{d}\right )\right ) \int \frac {\cos \left (\frac {b c}{d}+b x\right )}{\sqrt {c+d x}} \, dx}{2 b}-\frac {\left (d \sin \left (a-\frac {b c}{d}\right )\right ) \int \frac {\sin \left (\frac {b c}{d}+b x\right )}{\sqrt {c+d x}} \, dx}{2 b} \\ & = -\frac {\sqrt {c+d x} \cos (a+b x)}{b}+\frac {\cos \left (a-\frac {b c}{d}\right ) \text {Subst}\left (\int \cos \left (\frac {b x^2}{d}\right ) \, dx,x,\sqrt {c+d x}\right )}{b}-\frac {\sin \left (a-\frac {b c}{d}\right ) \text {Subst}\left (\int \sin \left (\frac {b x^2}{d}\right ) \, dx,x,\sqrt {c+d x}\right )}{b} \\ & = -\frac {\sqrt {c+d x} \cos (a+b x)}{b}+\frac {\sqrt {d} \sqrt {\frac {\pi }{2}} \cos \left (a-\frac {b c}{d}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{b^{3/2}}-\frac {\sqrt {d} \sqrt {\frac {\pi }{2}} \operatorname {FresnelS}\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right ) \sin \left (a-\frac {b c}{d}\right )}{b^{3/2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.04 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.88 \[ \int \sqrt {c+d x} \sin (a+b x) \, dx=\frac {i d e^{-\frac {i (b c+a d)}{d}} \left (-e^{2 i a} \sqrt {-\frac {i b (c+d x)}{d}} \Gamma \left (\frac {3}{2},-\frac {i b (c+d x)}{d}\right )+e^{\frac {2 i b c}{d}} \sqrt {\frac {i b (c+d x)}{d}} \Gamma \left (\frac {3}{2},\frac {i b (c+d x)}{d}\right )\right )}{2 b^2 \sqrt {c+d x}} \]

[In]

Integrate[Sqrt[c + d*x]*Sin[a + b*x],x]

[Out]

((I/2)*d*(-(E^((2*I)*a)*Sqrt[((-I)*b*(c + d*x))/d]*Gamma[3/2, ((-I)*b*(c + d*x))/d]) + E^(((2*I)*b*c)/d)*Sqrt[
(I*b*(c + d*x))/d]*Gamma[3/2, (I*b*(c + d*x))/d]))/(b^2*E^((I*(b*c + a*d))/d)*Sqrt[c + d*x])

Maple [A] (verified)

Time = 0.09 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.02

method result size
derivativedivides \(\frac {-\frac {d \sqrt {d x +c}\, \cos \left (\frac {b \left (d x +c \right )}{d}+\frac {d a -c b}{d}\right )}{b}+\frac {d \sqrt {2}\, \sqrt {\pi }\, \left (\cos \left (\frac {d a -c b}{d}\right ) \operatorname {C}\left (\frac {\sqrt {2}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )-\sin \left (\frac {d a -c b}{d}\right ) \operatorname {S}\left (\frac {\sqrt {2}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )\right )}{2 b \sqrt {\frac {b}{d}}}}{d}\) \(145\)
default \(\frac {-\frac {d \sqrt {d x +c}\, \cos \left (\frac {b \left (d x +c \right )}{d}+\frac {d a -c b}{d}\right )}{b}+\frac {d \sqrt {2}\, \sqrt {\pi }\, \left (\cos \left (\frac {d a -c b}{d}\right ) \operatorname {C}\left (\frac {\sqrt {2}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )-\sin \left (\frac {d a -c b}{d}\right ) \operatorname {S}\left (\frac {\sqrt {2}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )\right )}{2 b \sqrt {\frac {b}{d}}}}{d}\) \(145\)

[In]

int((d*x+c)^(1/2)*sin(b*x+a),x,method=_RETURNVERBOSE)

[Out]

2/d*(-1/2/b*d*(d*x+c)^(1/2)*cos(b*(d*x+c)/d+(a*d-b*c)/d)+1/4/b*d*2^(1/2)*Pi^(1/2)/(b/d)^(1/2)*(cos((a*d-b*c)/d
)*FresnelC(2^(1/2)/Pi^(1/2)/(b/d)^(1/2)*b*(d*x+c)^(1/2)/d)-sin((a*d-b*c)/d)*FresnelS(2^(1/2)/Pi^(1/2)/(b/d)^(1
/2)*b*(d*x+c)^(1/2)/d)))

Fricas [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.89 \[ \int \sqrt {c+d x} \sin (a+b x) \, dx=\frac {\sqrt {2} \pi d \sqrt {\frac {b}{\pi d}} \cos \left (-\frac {b c - a d}{d}\right ) \operatorname {C}\left (\sqrt {2} \sqrt {d x + c} \sqrt {\frac {b}{\pi d}}\right ) - \sqrt {2} \pi d \sqrt {\frac {b}{\pi d}} \operatorname {S}\left (\sqrt {2} \sqrt {d x + c} \sqrt {\frac {b}{\pi d}}\right ) \sin \left (-\frac {b c - a d}{d}\right ) - 2 \, \sqrt {d x + c} b \cos \left (b x + a\right )}{2 \, b^{2}} \]

[In]

integrate((d*x+c)^(1/2)*sin(b*x+a),x, algorithm="fricas")

[Out]

1/2*(sqrt(2)*pi*d*sqrt(b/(pi*d))*cos(-(b*c - a*d)/d)*fresnel_cos(sqrt(2)*sqrt(d*x + c)*sqrt(b/(pi*d))) - sqrt(
2)*pi*d*sqrt(b/(pi*d))*fresnel_sin(sqrt(2)*sqrt(d*x + c)*sqrt(b/(pi*d)))*sin(-(b*c - a*d)/d) - 2*sqrt(d*x + c)
*b*cos(b*x + a))/b^2

Sympy [F]

\[ \int \sqrt {c+d x} \sin (a+b x) \, dx=\int \sqrt {c + d x} \sin {\left (a + b x \right )}\, dx \]

[In]

integrate((d*x+c)**(1/2)*sin(b*x+a),x)

[Out]

Integral(sqrt(c + d*x)*sin(a + b*x), x)

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.21 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.38 \[ \int \sqrt {c+d x} \sin (a+b x) \, dx=-\frac {\sqrt {2} {\left (4 \, \sqrt {2} \sqrt {d x + c} b \cos \left (\frac {{\left (d x + c\right )} b - b c + a d}{d}\right ) + {\left (\left (i - 1\right ) \, \sqrt {\pi } d \left (\frac {b^{2}}{d^{2}}\right )^{\frac {1}{4}} \cos \left (-\frac {b c - a d}{d}\right ) + \left (i + 1\right ) \, \sqrt {\pi } d \left (\frac {b^{2}}{d^{2}}\right )^{\frac {1}{4}} \sin \left (-\frac {b c - a d}{d}\right )\right )} \operatorname {erf}\left (\sqrt {d x + c} \sqrt {\frac {i \, b}{d}}\right ) + {\left (-\left (i + 1\right ) \, \sqrt {\pi } d \left (\frac {b^{2}}{d^{2}}\right )^{\frac {1}{4}} \cos \left (-\frac {b c - a d}{d}\right ) - \left (i - 1\right ) \, \sqrt {\pi } d \left (\frac {b^{2}}{d^{2}}\right )^{\frac {1}{4}} \sin \left (-\frac {b c - a d}{d}\right )\right )} \operatorname {erf}\left (\sqrt {d x + c} \sqrt {-\frac {i \, b}{d}}\right )\right )}}{8 \, b^{2}} \]

[In]

integrate((d*x+c)^(1/2)*sin(b*x+a),x, algorithm="maxima")

[Out]

-1/8*sqrt(2)*(4*sqrt(2)*sqrt(d*x + c)*b*cos(((d*x + c)*b - b*c + a*d)/d) + ((I - 1)*sqrt(pi)*d*(b^2/d^2)^(1/4)
*cos(-(b*c - a*d)/d) + (I + 1)*sqrt(pi)*d*(b^2/d^2)^(1/4)*sin(-(b*c - a*d)/d))*erf(sqrt(d*x + c)*sqrt(I*b/d))
+ (-(I + 1)*sqrt(pi)*d*(b^2/d^2)^(1/4)*cos(-(b*c - a*d)/d) - (I - 1)*sqrt(pi)*d*(b^2/d^2)^(1/4)*sin(-(b*c - a*
d)/d))*erf(sqrt(d*x + c)*sqrt(-I*b/d)))/b^2

Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.35 (sec) , antiderivative size = 422, normalized size of antiderivative = 2.97 \[ \int \sqrt {c+d x} \sin (a+b x) \, dx=-\frac {\frac {\sqrt {2} \sqrt {\pi } {\left (2 \, b c + i \, d\right )} d \operatorname {erf}\left (\frac {i \, \sqrt {2} \sqrt {b d} \sqrt {d x + c} {\left (-\frac {i \, b d}{\sqrt {b^{2} d^{2}}} + 1\right )}}{2 \, d}\right ) e^{\left (\frac {i \, b c - i \, a d}{d}\right )}}{\sqrt {b d} {\left (-\frac {i \, b d}{\sqrt {b^{2} d^{2}}} + 1\right )} b} + \frac {\sqrt {2} \sqrt {\pi } {\left (2 \, b c - i \, d\right )} d \operatorname {erf}\left (-\frac {i \, \sqrt {2} \sqrt {b d} \sqrt {d x + c} {\left (\frac {i \, b d}{\sqrt {b^{2} d^{2}}} + 1\right )}}{2 \, d}\right ) e^{\left (\frac {-i \, b c + i \, a d}{d}\right )}}{\sqrt {b d} {\left (\frac {i \, b d}{\sqrt {b^{2} d^{2}}} + 1\right )} b} - 2 \, {\left (\frac {\sqrt {2} \sqrt {\pi } d \operatorname {erf}\left (\frac {i \, \sqrt {2} \sqrt {b d} \sqrt {d x + c} {\left (-\frac {i \, b d}{\sqrt {b^{2} d^{2}}} + 1\right )}}{2 \, d}\right ) e^{\left (\frac {i \, b c - i \, a d}{d}\right )}}{\sqrt {b d} {\left (-\frac {i \, b d}{\sqrt {b^{2} d^{2}}} + 1\right )}} + \frac {\sqrt {2} \sqrt {\pi } d \operatorname {erf}\left (-\frac {i \, \sqrt {2} \sqrt {b d} \sqrt {d x + c} {\left (\frac {i \, b d}{\sqrt {b^{2} d^{2}}} + 1\right )}}{2 \, d}\right ) e^{\left (\frac {-i \, b c + i \, a d}{d}\right )}}{\sqrt {b d} {\left (\frac {i \, b d}{\sqrt {b^{2} d^{2}}} + 1\right )}}\right )} c + \frac {2 \, \sqrt {d x + c} d e^{\left (\frac {i \, {\left (d x + c\right )} b - i \, b c + i \, a d}{d}\right )}}{b} + \frac {2 \, \sqrt {d x + c} d e^{\left (\frac {-i \, {\left (d x + c\right )} b + i \, b c - i \, a d}{d}\right )}}{b}}{4 \, d} \]

[In]

integrate((d*x+c)^(1/2)*sin(b*x+a),x, algorithm="giac")

[Out]

-1/4*(sqrt(2)*sqrt(pi)*(2*b*c + I*d)*d*erf(1/2*I*sqrt(2)*sqrt(b*d)*sqrt(d*x + c)*(-I*b*d/sqrt(b^2*d^2) + 1)/d)
*e^((I*b*c - I*a*d)/d)/(sqrt(b*d)*(-I*b*d/sqrt(b^2*d^2) + 1)*b) + sqrt(2)*sqrt(pi)*(2*b*c - I*d)*d*erf(-1/2*I*
sqrt(2)*sqrt(b*d)*sqrt(d*x + c)*(I*b*d/sqrt(b^2*d^2) + 1)/d)*e^((-I*b*c + I*a*d)/d)/(sqrt(b*d)*(I*b*d/sqrt(b^2
*d^2) + 1)*b) - 2*(sqrt(2)*sqrt(pi)*d*erf(1/2*I*sqrt(2)*sqrt(b*d)*sqrt(d*x + c)*(-I*b*d/sqrt(b^2*d^2) + 1)/d)*
e^((I*b*c - I*a*d)/d)/(sqrt(b*d)*(-I*b*d/sqrt(b^2*d^2) + 1)) + sqrt(2)*sqrt(pi)*d*erf(-1/2*I*sqrt(2)*sqrt(b*d)
*sqrt(d*x + c)*(I*b*d/sqrt(b^2*d^2) + 1)/d)*e^((-I*b*c + I*a*d)/d)/(sqrt(b*d)*(I*b*d/sqrt(b^2*d^2) + 1)))*c +
2*sqrt(d*x + c)*d*e^((I*(d*x + c)*b - I*b*c + I*a*d)/d)/b + 2*sqrt(d*x + c)*d*e^((-I*(d*x + c)*b + I*b*c - I*a
*d)/d)/b)/d

Mupad [F(-1)]

Timed out. \[ \int \sqrt {c+d x} \sin (a+b x) \, dx=\int \sin \left (a+b\,x\right )\,\sqrt {c+d\,x} \,d x \]

[In]

int(sin(a + b*x)*(c + d*x)^(1/2),x)

[Out]

int(sin(a + b*x)*(c + d*x)^(1/2), x)